Fundamentals of Glycan Structure

Learning Objectives

How are glycans named?
 What are the different constituents of a glycan?
 How are these represented?
 What conformations do sugar residues adopt in solution
 Why do glycan conformations matter?

Fundamentals of Glycan Structure

Carbohydrate Nomenclature Monosaccharides ✓ Structure ✓ Fisher Representation ✓ Cyclic Form ✓ Chair Form ✓ Mutarotation ■ Monosaccharide Derivatives Reducing Sugars ✓ Uronic Acids ✓ Other Derivatives ■ Monosaccharide Conformation Inter-Glycosidic Bond ✓ Normal ✓ Sucrose ✓ Lactose ✓ Sequence Specificity and Recognition **Branching**

Carbohydrate Nomenclature

- \Box The word 'carbohydrate' implies "hydrate of carbon" ... $C_n(H_2O)_m$
 - ✓ Glucose (a monosaccharide) $C_6H_{12}O_6 ... C_6(H_2O)_6$
 - ✓ Sucrose (a disaccharide) $C_{12}H_{22}O_{11}...C_{12}(H_2O)_{11}$
 - ✓ Cellulose (a polysaccharide) $(C_6H_{12}O_6)_n$... $(C_6(H_2O)_6)_n$
- □ Not all carbohydrates have this formula ... some have nitrogen
 - ✓ Glucosamine (glucose + amine) $C_6H_{13}O_5N$... - NH_2 at the 2-position of glucose
 - ✓ N-acetyl galactosamine (galactose + amine + acetyl group) $C_8H_{15}O_6N$... NHCOCH₃ at the 2-position of galactose
- ☐ Typical prefixes and suffixes used in naming carbohydrates
 - ✓ Suffix = '-ose' & prefix = 'tri-', 'tetr-', 'pent-', 'hex-'
 - ✓ Pentose (a five carbon monosaccharide) or hexose (a six carbon monosaccharide)
- ☐ Functional group types
 - ✓ Monosaccharides with an aldehyde group are called aldoses ... e.g.,
 glyceraldehyde
 - ✓ Those with a keto group are called ketoses ... e.g., dihydroxyacetone

☐ Structure

- ✓ Have a general formula $C_nH_{2n}O_n$ and contain a carbonyl group
- \checkmark Common monosaccharides have 3 \rightarrow 9 carbons
- ✓ Two molecules form the class of smallest monosaccharides ... glyceraldehyde and dihydroxyacetone

☐ Glyceraldehyde has a chiral carbon

☐ 3-Dimensional arrangement

CHO
$$HOH_2$$
 $HOCH_2$ $HOCH_2$

□ 2-Dimensional representation

Emil Fischer's representation

✓ Arbitrarily assigned the dextrorotatory enantiomer as Dglyceraldehyde, which fortuitously proved correct

CHO CHO
$$H \longrightarrow OH \qquad HO \longrightarrow H$$

$$CH_2OH \qquad CH_2OH$$

$$(D) \qquad (+) \qquad (L) \qquad (-)$$

Note: This does not mean that all D-saccharides are dextrorotatory; likewise it does not mean that all D-saccharides are also (R) in the Cahn-Ingold-Prelog system

√ 'D' monosaccharides have the same configuration on their penultimate carbon as 'D'
glyceraldehyde

D-gulose

D-idose

D-galactose

✓ Exactly similar series for 'L' monosaccharides starting with 'L' glyceraldehyde

D-mannose

D-allose

D-altrose

D-glucose

✓ Likewise, similar series exists for 'L' and 'D' ketoses starting from dihydroxyacetone

D-talose

☐ 'L' ketoses

☐ Some Useful Information on Monosaccharides

- ✓ D-glucose is also called dextrose because it is dextrorotatory.
- ✓ D-glucose is the most abundant monosaccharide; it is present in most fruit juices
- ✓ D-glucose is also called blood sugar it is present in about 65 100 mg per 100 mL of blood
- ✓ The dextrose solution for iv drip contains about 5% glucose + 0.15% saline (KCl)
- ✓ Fructose is one of the monosaccharides present in disaccharide sucrose (table sugar) ... the other is D-glucose
- ✓ Galactose is part of lactose (milk sugar)

- Monosaccharides Are Typically not Linear (or Open-Chain)
 - ✓ Remember from organic chemistry: Aldehydes and ketones react with alcohols to give hemi-acetals

$$\begin{array}{c} H \\ \downarrow O \\ R \\ \end{array} + \qquad \begin{array}{c} H \\ \downarrow O \\ R \\ \end{array} + \qquad \begin{array}{c} H \\ \downarrow O \\ R \\ \end{array} + \qquad \begin{array}{c} H \\ \downarrow O \\ R \\ \end{array} + \qquad \begin{array}{c} H \\ \downarrow O \\ H \\ \downarrow H \\ H \\ \downarrow O \\ \downarrow$$

- ✓ What is an anomer?
- ✓ How are α and β -anomers defined?
- ✓ What is an epimer?

☐ Cyclic Structure of Ketoses

- ✓ Similar cyclic structures exist for five membered saccharides ... e.g., ribose.
- ✓ These five membered cyclic hemiacetals are well known for nucleic acids ... e.g.,
 RNA (ribonucleic acid) and DNA (deoxyribonucleic acid)

HAWORTH Projections

☐ The Cyclic Form Assumes Different Conformations in Solution

Chair Conformations

✓ Why is β -D-glucose the most common sugar in nature?

☐ The Cyclic Form of D-Galactose

Chair Conformations

☐ Mutarotation Arises From Cyclic and Open-Chain Form Interconversion

CHO
H—OH
HO H
HOH
HOH
HOH
HOH
CH₂OH
D-glucose

HOH₂C
HOH
OH

α-D-glucopyranose
(α-D-glucose)

Optical activity
$$[\alpha]_D = +112.2^O$$
At equilibrium $[\alpha]_D = +52.7^O$ (Not an average!
But weighted average; 63.6% of the β-anomer)

Monosaccharide Derivatives

Reducing Sugars and Reducing End

- ✓ Reducing sugars and diabetes
 - ➤ Hemoglobin (Hb) is glycated HbA1c levels should be < 6.5%
 - ➤ Reaction of high glucose with NH₂ group at the N-terminus (Val) of Hb
 - Non-enzymatic
 - Reflects Glc levels for the past 3 months (typical life of erythrocytes)

Monosaccharide Derivatives

☐ Uronic Acids

✓ Biological relevance

- Several other uronic acids occur in our body, e.g., D-mannuronic acid (from D-mannose), L-iduronic acid (from L-idose), D-galacturonic acid
- Components of many polysaccharides
- Add to the conformational complexity , e.g., L-iduronic acid can exist in several conformations other than chair $-{}^2S_0$, 0S_2 , 1C_4 and 4C_1

Monosaccharide Derivatives

☐ Glycosamines

✓ Several aminosugars are known including D-glucosamine, D-mannosamine, D-glucosamine and N-acetyl-D-glucosamine. These have a nitrogen at position 2

$oldsymbol{\square}$ Other Derivatives

- ✓ Glycan Esters
 - ➤ The –OH groups can be esterified enzymatically, e.g., phosphate esters, acyl esters, and sulfate esters
- ✓ Deoxy Sugars
 - ➤ The —OH group can be replaced with —H, e.g., 2-deoxyribose (C-2 deoxy), fucose (C-6 deoxy), etc.
- ✓ Methylated Sugars
 - ➤ The –OH group can be methylated (methyltransferases), e.g., –OMe group at C-1

18

Monosaccharide Conformation

☐ Finding the Most Stable Conformation of a Monosaccharide

D-Glucose

Monosaccharide Conformation

☐ Conformation of L-Iduronic Acid

CHO
$$CHO$$
 CHO
 $COOH$
 $COOH$
 CHO
 CHO

☐ The Inter-Glycosidic Bond

- ✓ The bond between two monosaccharides is the inter-glycosidic bond
- ✓ Fundamental linkage for generation of oligosaccharides
- ✓ Any hydroxylicated molecule (e.g., amino acids Tyr, Ser, Thr; OR alcohols cholesterol, cholic acid; OR saccharides) can form glycosidic bond
- ✓ Most oligosaccharides form glycosidic bond between the anomeric carbon (C-1) and other carbons (C-2, C-3, C-4, and C-6).
- ✓ These different glycosidic linkages enhance the diversity of glycans
- ✓ Glycosidic bond induces directionality in the saccharide chain, i.e., non-reducing end

 end → reducing end
- ✓ Glycosidic bonds make the oligomer flexible

☐ Sucrose's Inter-Glycosidic Bond is Different

✓ Sucrose (table sugar) is a disaccharide made from α -D-glucose and β -D-fructose, where the inter-glycosidic bond is α -1,2

- ✓ How do we find out which atoms are connected in polysaccharides and what is their orientation?
- ✓ How do we know what conformation does a sugar adopt?

Lactose

✓ Lactose (milk sugar) is a disaccharide made from β -D-galactose and D-glucose, where the inter-glycosidic bond is β -1,4

✓ Lactose intolerance? ... cow's milk ... 4-6% lactose ... some infants, most blacks and many Orientals have low level of lactase, which hydrolyzes the $\beta(1,4)$ bond of lactose ... lactose accumulates in colon where bacterial fermentation produces large quantities of CO_2 , H_2 and organic acids

☐ Sequence Specificity and Recognition

✓ Is lactose (D-galactose- β (1 →4)-D-glucose) is same as D-glucose- β (1 →4)-D-glucose?

✓ Remember! D-glucose is consumed by our body; L-glucose is left untouched!

- ☐ Branching is a Unique Structure Only Present in Carbohydrates
 - ✓ Two inter-glycosidic linkages to the same monosaccharide results in branching
 - ✓ Branching is not found in proteins, nucleic acids and lipids Only in carbohydrate

Neu5Acα6Galβ4GlcNAcβ2Manα₆
Manβ4GlcNAcβ4GlcNAcβ-Asn
Neu5Acα6Galβ4GlcNAcβ2Manα³

N-Glycan

Fucα 3 Neu5Acα3Galβ4GlcNAcβ6 Neu5Acα3Galβ3GalNAcα-Ser

O-Glycan

Taken from 'Essentials of Glycobiology.' Edited by Varki, A.; et al.; Cold Spring Harbor Laboratory Press, New York, 2009, pg. 36.